Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nature ; 628(8009): 765-770, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38658685

RESUMEN

Solar fuels offer a promising approach to provide sustainable fuels by harnessing sunlight1,2. Following a decade of advancement, Cu2O photocathodes are capable of delivering a performance comparable to that of photoelectrodes with established photovoltaic materials3-5. However, considerable bulk charge carrier recombination that is poorly understood still limits further advances in performance6. Here we demonstrate performance of Cu2O photocathodes beyond the state-of-the-art by exploiting a new conceptual understanding of carrier recombination and transport in single-crystal Cu2O thin films. Using ambient liquid-phase epitaxy, we present a new method to grow single-crystal Cu2O samples with three crystal orientations. Broadband femtosecond transient reflection spectroscopy measurements were used to quantify anisotropic optoelectronic properties, through which the carrier mobility along the [111] direction was found to be an order of magnitude higher than those along other orientations. Driven by these findings, we developed a polycrystalline Cu2O photocathode with an extraordinarily pure (111) orientation and (111) terminating facets using a simple and low-cost method, which delivers 7 mA cm-2 current density (more than 70% improvement compared to that of state-of-the-art electrodeposited devices) at 0.5 V versus a reversible hydrogen electrode under air mass 1.5 G illumination, and stable operation over at least 120 h.

3.
J Am Chem Soc ; 145(25): 13709-13714, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37310357

RESUMEN

Photoelectrochemical devices could play a crucial role toward fuel production in a circular economy. Yet, light absorption suffers losses from thermalization and the inability to use low-energy photons. Here, we demonstrate that photoelectrochemical reactors can utilize this waste heat by integrating thermoelectric modules, which provide additional voltage under concentrated light irradiation. While most single semiconductors require external bias, we already accomplish unassisted water splitting under 2 sun irradiation by wiring a BiVO4 photoanode to a thermoelectric element, whereas the photocurrent of a perovskite-BiVO4 tandem system is enhanced 1.7-fold at 5 sun. This strategy is particularly suitable for photoanodes with more positive onset potentials like hematite, with thermoelectric-perovskite-Fe2O3 systems achieving a 29.7× overall photocurrent increase at 5 sun over conventional perovskite-Fe2O3 devices without light concentration. This thermal management approach provides a universal strategy to facilitate widespread solar fuel production, as light concentration increases output, reduces the reactor size and cost, and may enhance catalysis.

4.
Sci Adv ; 9(6): eade9044, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36763656

RESUMEN

Artificial photosynthesis can provide a solution to our current energy needs by converting small molecules such as water or carbon dioxide into useful fuels. This can be accomplished using photochemical diodes, which interface two complementary light absorbers with suitable electrocatalysts. Nanowire semiconductors provide unique advantages in terms of light absorption and catalytic activity, yet great control is required to integrate them for overall fuel production. In this review, we journey across the progress in nanowire photoelectrochemistry (PEC) over the past two decades, revealing design principles to build these nanowire photochemical diodes. To this end, we discuss the latest progress in terms of nanowire photoelectrodes, focusing on the interplay between performance, photovoltage, electronic band structure, and catalysis. Emphasis is placed on the overall system integration and semiconductor-catalyst interface, which applies to inorganic, organic, or biologic catalysts. Last, we highlight further directions that may improve the scope of nanowire PEC systems.

5.
Acc Chem Res ; 55(23): 3376-3386, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36395337

RESUMEN

The sustainable synthesis of fuels and chemicals is key to attaining a carbon-neutral economy. This can be achieved by mimicking the light-harvesting and catalytic processes occurring in plants. Solar fuel production is commonly performed via established approaches, including photovoltaic-electrochemical (PV-EC), photoelectrochemical (PEC), and photocatalytic (PC) systems. A recent shift saw these systems evolve into integrated, compact panels, which suit practical applications through their simplicity, scalability, and ease of operation. This advance has resulted in a suite of apparently similar technologies, including the so-called artificial leaves and PC sheets. In this Account, we compare these different thin film technologies based on their micro- and nanostructure (i.e., layered vs particulate), operation principle (products occurring on the same or different sides of the panel), and product/reaction scope (overall water splitting and CO2 reduction, or organics, biomass, and waste conversion).For this purpose, we give an overview of developments established over the past few years in our laboratory. Two light absorbers are generally required to overcome the thermodynamic challenges of coupling water oxidation to proton or CO2 reduction with good efficiency. Hence, tandem artificial leaves combine a lead halide perovskite photocathode with a BiVO4 photoanode to generate syngas (a mixture of H2 and CO), whereas PC sheets involve metal-ion-doped SrTiO3 and BiVO4 particles for selective formate synthesis from CO2 and water. On the other hand, only a single light absorber is needed for coupling H2 evolution to organics oxidation in the thermodynamically less demanding photoreforming process. This can be performed by immobilized carbon nitride (CNx) in the case of PC sheets or by a single perovskite light absorber in the case of PEC reforming leaves. Such systems can be integrated with a range of inorganic, molecular, and biological catalysts, including metal alloys, molecular cobalt complexes, enzymes, and bacteria, with low overpotentials and high catalytic activities toward selective product formation.This wide reaction scope introduces new challenges toward quantifying and comparing the performance of different systems. To this end, we propose new metrics to evaluate the performance of solar fuel panels based on the areal product rates and commercial product value. We further explore the key opportunities and challenges facing the commercialization of thin film technologies for solar fuels research, including performance losses over larger areas and catalyst/device recyclability. Finally, we identify emerging applications beyond fuels, where such light-driven panels can make a difference, including the waste management, chemical synthesis, and pharmaceutical industries. In the long term, these aspects may facilitate a transition toward a light-driven circular economy.


Asunto(s)
Energía Solar , Dióxido de Carbono/química , Titanio/química , Agua/química
6.
Nature ; 608(7923): 518-522, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35978127

RESUMEN

Photoelectrochemical (PEC) artificial leaves hold the potential to lower the costs of sustainable solar fuel production by integrating light harvesting and catalysis within one compact device. However, current deposition techniques limit their scalability1, whereas fragile and heavy bulk materials can affect their transport and deployment. Here we demonstrate the fabrication of lightweight artificial leaves by employing thin, flexible substrates and carbonaceous protection layers. Lead halide perovskite photocathodes deposited onto indium tin oxide-coated polyethylene terephthalate achieved an activity of 4,266 µmol H2 g-1 h-1 using a platinum catalyst, whereas photocathodes with a molecular Co catalyst for CO2 reduction attained a high CO:H2 selectivity of 7.2 under lower (0.1 sun) irradiation. The corresponding lightweight perovskite-BiVO4 PEC devices showed unassisted solar-to-fuel efficiencies of 0.58% (H2) and 0.053% (CO), respectively. Their potential for scalability is demonstrated by 100 cm2 stand-alone artificial leaves, which sustained a comparable performance and stability (of approximately 24 h) to their 1.7 cm2 counterparts. Bubbles formed under operation further enabled 30-100 mg cm-2 devices to float, while lightweight reactors facilitated gas collection during outdoor testing on a river. This leaf-like PEC device bridges the gulf in weight between traditional solar fuel approaches, showcasing activities per gram comparable to those of photocatalytic suspensions and plant leaves. The presented lightweight, floating systems may enable open-water applications, thus avoiding competition with land use.

7.
Nat Mater ; 21(8): 864-868, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35618828

RESUMEN

Photoelectrochemical (PEC) devices have been developed for direct solar fuel production but the limited stability of submerged light absorbers can hamper their commercial prospects.1,2 Here, we demonstrate photocathodes with an operational H2 evolution activity over weeks, by integrating a BiOI light absorber into a robust, oxide-based architecture with a graphite paste conductive encapsulant. In this case, the activity towards proton and CO2 reduction is mainly limited by catalyst degradation. We also introduce multiple-pixel devices as an innovative design principle for PEC systems, displaying superior photocurrents, onset biases and stability over corresponding conventional single-pixel devices. Accordingly, PEC tandem devices comprising multiple-pixel BiOI photocathodes and BiVO4 photoanodes can sustain bias-free water splitting for 240 h, while devices with a Cu92In8 alloy catalyst demonstrate unassisted syngas production from CO2.

8.
Inorg Chem ; 61(16): 6223-6233, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35412823

RESUMEN

The fabrication of mixed-metal oxide films holds promise for the development of practical photoelectrochemical catalyst coatings but currently presents challenges in terms of homogeneity, cost, and scalability. We report a straightforward and versatile approach to produce catalytically active zirconium-based films for electrochemical and photoelectrochemical water oxidation. The mixed-metal oxide catalyst films are derived from novel single-source precursor oxide cage compounds containing Zr with first-row transition metals such as Co, Fe, and Cu. The Zr-based film doped with Co on fluorine-doped tin oxide (FTO)-coated glass exhibits the highest electrocatalytic O2 evolution performance in an alkaline medium and an operational stability above 18 h. The deposition of this film onto a BiVO4 photoanode significantly enhances its photoelectrochemical activity toward solar water oxidation, lowering the onset potential by 0.12-0.21 V vs reversible hydrogen electrode (RHE) and improving the maximum photocurrent density by ∼50% to 2.41 mA cm-2 for the CoZr-coated BiVO4 photoanodes compared to that for bare BiVO4.

9.
Angew Chem Int Ed Engl ; 60(50): 26303-26307, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34472692

RESUMEN

Semi-artificial photoelectrochemistry can combine state-of-the-art photovoltaic light-absorbers with enzymes evolved for selective fuel-forming reactions such as CO2 reduction, but the overall performance of such hybrid systems has been limited to date. Here, the electrolyte constituents were first tuned to establish an optimal local environment for a W-formate dehydrogenase to perform electrocatalysis. The CO2 reductase was then interfaced with a triple cation lead mixed-halide perovskite through a hierarchically structured porous TiO2 scaffold to produce an integrated photocathode achieving a photocurrent density of -5 mA cm-2 at 0.4 V vs. the reversible hydrogen electrode during simulated solar light irradiation. Finally, the combination with a water-oxidizing BiVO4 photoanode produced a bias-free integrated biophotoelectrochemical tandem device (semi-artificial leaf) with a solar CO2 -to-formate energy conversion efficiency of 0.8 %.

10.
ACS Energy Lett ; 5(1): 232-237, 2020 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32010793

RESUMEN

Lead halide perovskite solar cells are notoriously moisture-sensitive, but recent encapsulation strategies have demonstrated their potential application as photoelectrodes in aqueous solution. However, perovskite photoelectrodes rely on precious metal co-catalysts, and their combination with biological materials remains elusive in integrated devices. Here, we interface [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough, a highly active enzyme for H2 generation, with a triple cation mixed halide perovskite. The perovskite-hydrogenase photoelectrode produces a photocurrent of -5 mA cm-2 at 0 V vs RHE during AM1.5G irradiation, is stable for 12 h and the hydrogenase exhibits a turnover number of 1.9 × 106. The positive onset potential of +0.8 V vs RHE allows its combination with a BiVO4 water oxidation photoanode to give a self-sustaining, bias-free photoelectrochemical tandem system for overall water splitting (solar-to-hydrogen efficiency of 1.1%). This work demonstrates the compatibility of immersed perovskite elements with biological catalysts to produce hybrid photoelectrodes with benchmark performance, which establishes their utility in semiartificial photosynthesis.

11.
RSC Adv ; 10(49): 29394-29401, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35521098

RESUMEN

The development of thin-film thermoelectric applications in sensing and energy harvesting can benefit largely from suitable deposition methods for earth-abundant materials. In this study, p-type copper oxide thin films have been prepared on soda lime silicate glass by direct current (DC) magnetron sputtering at room temperature from a pure copper metallic target in an argon atmosphere, followed by subsequent annealing steps at 300 °C under various atmospheres, namely air (CuO:air), nitrogen (CuO:N) and oxygen (CuO:O). The resultant films have been studied to understand the influence of various annealing atmospheres on the structural, spectroscopic and thermoelectric properties. X-ray diffraction (XRD) patterns of the films showed reflexes that could be assigned to those of crystalline CuO with a thin mixed Cu(I)Cu(II) oxide, which was also observed by near edge X-ray absorption fine structure spectroscopy (NEXAFS). The positive Seebeck coefficient (S) reached values of up to 204 µV K-1, confirming the p-type behavior of the films. Annealing under oxygen provided a significant improvement in the electrical conductivity up to 50 S m-1, resulting in a power factor of 2 µW m-1 K-2. The results reveal the interplay between the intrinsic composition and the thermoelectric performance of mixed copper oxide thin films, which can be finely adjusted by simply varying the annealing atmosphere.

12.
Nat Mater ; 19(2): 189-194, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31636423

RESUMEN

The photoelectrochemical (PEC) production of syngas from water and CO2 represents an attractive technology towards a circular carbon economy. However, the high overpotential, low selectivity and cost of commonly employed catalysts pose challenges for this sustainable energy-conversion process. Here we demonstrate highly tunable PEC syngas production by integrating a cobalt porphyrin catalyst immobilized on carbon nanotubes with triple-cation mixed halide perovskite and BiVO4 photoabsorbers. Empirical data analysis is used to clarify the optimal electrode selectivity at low catalyst loadings. The perovskite photocathodes maintain selective aqueous CO2 reduction for one day at light intensities as low as 0.1 sun, which provides pathways to maximize daylight utilization by operating even under low solar irradiance. Under 1 sun irradiation, the perovskite-BiVO4 PEC tandems sustain bias-free syngas production coupled to water oxidation for three days. The devices present solar-to-H2 and solar-to-CO conversion efficiencies of 0.06 and 0.02%, respectively, and are able to operate as standalone artificial leaves in neutral pH solution.

15.
ACS Appl Mater Interfaces ; 11(26): 23198-23206, 2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31252465

RESUMEN

Metal halide perovskites are actively pursued as photoelectrodes to drive solar fuel synthesis. However, currently, these photocathodes suffer from limited stability in water, which hampers their practical application. Here, we report a high-performance solution-processable photocathode composed of cesium formamidinium methylammonium triple-cation lead halide perovskite protected by an Al-doped ZnO (AZO) layer combined with a Field's metal encapsulation. Careful selection of charge transport layers resulted in an improvement in photocurrent, fill factor, device stability and reproducibility. The dead pixels count reduced from 25 to 6% for the devices with an AZO layer, and in photocathodes with an AZO layer the photocurrent density increased by almost 20% to 14.3 mA cm-2. In addition, we observed a 5-fold increase in the device lifetime for photocathodes with AZO, which reached up to 18 h before complete failure. Finally, the photocathodes are fabricated using low-cost and scalable methods, which have promise to become compatible with standard solution-based processes.

16.
Adv Mater ; 30(46): e1804033, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30285284

RESUMEN

Single-source precursors are used to produce nanostructured BiVO4 photoanodes for water oxidation in a straightforward and scalable drop-casting synthetic process. Polyoxometallate precursors, which contain both Bi and V, are produced in a one-step reaction from commercially available starting materials. Simple annealing of the molecular precursor produces nanocrystalline BiVO4 films. The precursor can be designed to incorporate a third metal (Co, Ni, Cu, or Zn), enabling the direct formation of doped BiVO4 films. In particular, the Co- and Zn-doped photoanodes show promise for photoelectrochemical water oxidation, with photocurrent densities >1 mA cm-2 at 1.23 V vs reversible hydrogen electrode (RHE). Using this simple synthetic process, a 300 cm2 Co-BiVO4 photoanode is produced, which generates a photocurrent of up to 67 mA at 1.23 V vs RHE and demonstrates the scalability of this approach.

17.
Angew Chem Int Ed Engl ; 57(33): 10595-10599, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-29888857

RESUMEN

Hydrogenases (H2 ases) are benchmark electrocatalysts for H2 production, both in biology and (photo)catalysis in vitro. We report the tailoring of a p-type Si photocathode for optimal loading and wiring of H2 ase through the introduction of a hierarchical inverse opal (IO) TiO2 interlayer. This proton-reducing Si|IO-TiO2 |H2 ase photocathode is capable of driving overall water splitting in combination with a photoanode. We demonstrate unassisted (bias-free) water splitting by wiring Si|IO-TiO2 |H2 ase to a modified BiVO4 photoanode in a photoelectrochemical (PEC) cell during several hours of irradiation. Connecting the Si|IO-TiO2 |H2 ase to a photosystem II (PSII) photoanode provides proof of concept for an engineered Z-scheme that replaces the non-complementary, natural light absorber photosystem I with a complementary abiotic silicon photocathode.


Asunto(s)
Hidrogenasas/metabolismo , Energía Solar , Agua/metabolismo , Bismuto/química , Técnicas Electroquímicas , Electrodos , Hidrógeno/metabolismo , Luz , Procesos Fotoquímicos , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Tecnicas de Microbalanza del Cristal de Cuarzo , Silicio/química , Titanio/química , Vanadatos/química , Agua/química
18.
ACS Appl Mater Interfaces ; 9(38): 33308-33316, 2017 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-28870076

RESUMEN

Although the deposition of alternating layers from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and polyaniline (PANI) salts has recently provided a breakthrough in the field of conductive polymers, the cause for the conductivity improvement has remained unclear. In this work, we report a cooperative doping effect between alternating PANI base and PEDOT:PSS layers, resulting in electrical conductivities of 50-100 S cm-1 and power factors of up to 3.0 ± 0.5 µW m-1 K-2, which surpass some of the recent values obtained for protonated PANI/PEDOT:PSS multilayers by a factor of 20. In this case, the simultaneous improvement in the electrical conductivity of both types of layers is caused by the in situ protonation of PANI, which corresponds to the removal of the excess acidic PSS chains from the PEDOT:PSS grains. The interplay between the functional groups' reactivity and the supramolecular chain reorganization leads to an array of preparation-dependent phenomena, including a stepwise increase in the film thickness, an alternation in the electrical conductivity, and the formation of a diverse surface landscape. The latter effect can be traced to a buildup of strain within the layers, which results in either the formation of folds or the shrinkage of the film. These results open new paths for designing nanostructured thin-film thermoelectrics.

19.
PLoS One ; 11(3): e0151708, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26982458

RESUMEN

As thermoelectric devices begin to make their way into commercial applications, the emphasis is put on decreasing the thermal conductivity. In this purely theoretical study, finite element analysis is used to determine the effect of a supporting material on the thermal conductivity of a thermoelectric module. The simulations illustrate the heat transfer along a sample, consisting from Cu, Cu2O and PbTe thermoelectric layers on a 1 mm thick Pyrex glass substrate. The influence of two different types of heating, at a constant temperature and at a constant heat flux, is also investigated. It is revealed that the presence of a supporting material plays an important role on lowering the effective thermal conductivity of the layer-substrate ensemble. By using thinner thermoelectric layers the effective thermal conductivity is further reduced, almost down to the value of the glass substrate. As a result, the temperature gradient becomes steeper for a fixed heating temperature, which allows the production of devices with improved performance under certain conditions. Based on the simulation results, we also propose a model for a robust thin film thermoelectric device. With this suggestion, we invite the thermoelectric community to prove the applicability of the presented concept for practical purposes.


Asunto(s)
Vidrio , Conductividad Térmica
20.
Phys Chem Chem Phys ; 18(16): 10700-7, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-26967595

RESUMEN

We present a facile alternative to other well known strategies for synthesizing flexible thermoelectric materials. Instead of printing thin active layers on flexible substrates or doping conductive polymers, we produce thermoelectric pastes, using a mixture of graphite, copper(I) oxide and polychlorotrifluoroethene. The Seebeck coefficient of the investigated pastes varies between 10 and 600 µV K(-1), while the electrical conductivity spans over an even wider range of 10(-4) to 10(2) S m(-1). Here, the influence of phenomena such as percolation on the electrical transport is revealed. The resulting power factor reaches 5.69 × 10(-4) ± 0.70 × 10(-4) µW m(-1) K(-2) for the graphite-polymer paste, with an unexpected minimum at a graphite molar fraction of approximately 0.4. The values are comparable to those of the powder mixtures, which are slightly higher, but less precisely tunable. Such compounds are further evaluated for practical applications. The graphite-polymer paste is used to exemplify, how a flexible thermoelectric sensor can be easily manufactured, step by step. Our results represent a proof of principle, that thermoelectric pastes are viable alternatives to current solutions. A further expansion of the scope for the composites can be achieved by using high performance thermoelectric materials and conductive polymers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...